Parallel Programming

Lec 6

Books

Chapman & Hall/CRC Numerical Analysis and Scientific Computing

Parallel Algorithms

Henri Casanova, Arnaud Legrand, and Yves Robert

Undergraduate Topics in Computer Science

Roman Trobec · Boštjan Slivnik Patricio Bulić · Borut Robič

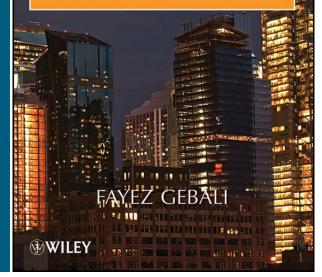
Introduction to Parallel Computing

From Algorithms to Programming on State-of-the-Art Platforms

Deringer

Wiley Series on Parallel and Distributed Computing • Albert Zomaya, Series Editor

ALGORITHMS AND PARALLEL COMPUTING



PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14779

Benha Ui	niversity	Staff Settlef:one:Ahmed Hassan Ahmed Abu El Atta (
Benha University Home	You are in: <u>Home/Courses/C</u> Ass. Lect. Ahmed Has Compilers	ssan Ahmed Abu El Atta :: Course Details:
النسفة العربية		add course edit course
My C.V.	Course name	Compilers
About	1	Undergraduate
Courses	Level	f
Publications	Last year taught	2018
Inlinks(Competition)	Course description	Not Uploaded
Theses		Q+
Reports		Too too
Published books	Course password	
Workshops / Conferences		
Supervised PhD	Course files	add files
Supervised MSc	Course URLs	add URLs
Supervised Projects	Course assignments	add assignments
Education		
Language skills	Course Exams &Model Answers	add exams
Academic Positions		(edit)

Matrix-Vector Multiplication

Problem Statement

The result of multiplying the matrix A of order $m \times n$ by vector b, which consists of n elements, is the vector c of size m

Each ith element of which is the result of inner multiplication of ith matrix A row (let us denote this row by a_i) by vector b:

$$c_i = (a_i, b) = \sum_{j=0}^{n-1} a_{ij} b_j, \ 0 \le i \le m-1$$

Multiplying a square matrix by a vector (Sequential algorithm)

Simply a series of dot products

Input: Matrix A[m][n]

Vector B[n]

Output: C[m]

```
for ( i = 0; i < m; i++ )
C[i] = 0;
for ( j = 0; j < n; j++ )
C[i] += A[i][j] * B[j];
```

Multiplying a square matrix by a vector (Sequential algorithm)

- Inner loop requires n multiplications and n 1 additions
- Complexity of inner loop is O(n)
- There are a total of m dot products
- Overall complexity: O(mn)
- O(n²) for a square matrix

Parallel Methods for Matrix-Vector Multiplication

Data Distribution

The repetition of the same computational operations for different matrix elements is typical of different matrix calculation methods.

In this case we can say that there exist data parallelism.

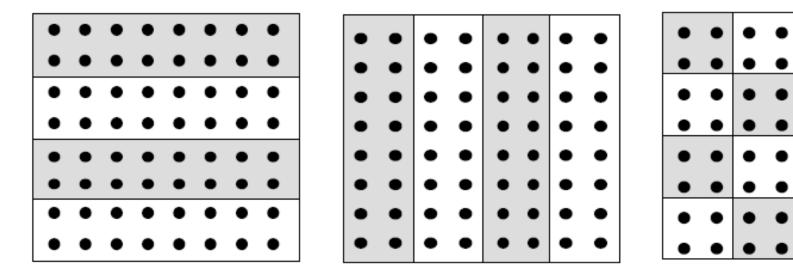
As a result, the problem to parallelize matrix operations can be reduced in most cases to matrix distributing among the processors of the computer system.

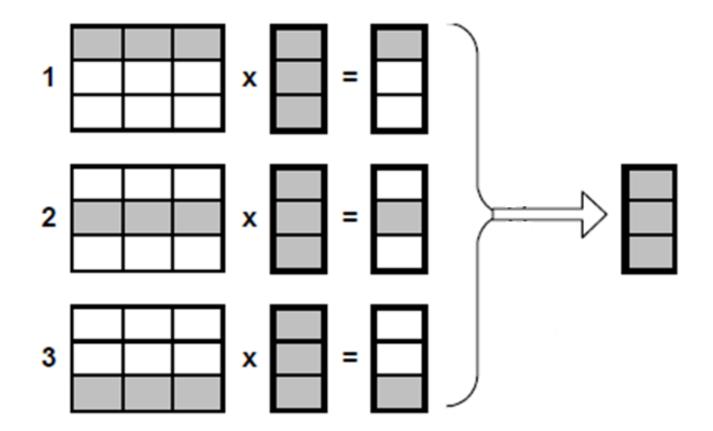
The most general and the most widely used matrix distribution methods consist in partitioning data into stripes (vertically and horizontally) or rectangular fragments (blocks).

Data Distribution

- 1. Rowwise block striping
 - Divide matrix elements into group of rows
 - Each process responsible for a contiguous group of m/p rows
- 2. Columnwise block striping
 - Divide matrix elements into group of columns
 - Each process responsible for a contiguous group of n/p columns
- 3. Checkerboard block decomposition
- Form a virtual grid
- Matrix is divided into 2-D blocks aligning with the grid
- Let the grid have **r** rows and **c** columns
- Each process responsible for a block of matrix containing at most m/r rows and n/c columns

Data Distribution





If this case, the operation of inner multiplication of a row of the matrix A and the vector **b** can be chosen as the basic computational subtask.

To execute the basic subtask of inner multiplication the processor must contain the corresponding row of matrix A and the copy of vector b.

After computation completion each basic subtask determines one of the elements of the result vector **c**.

Rowwise Parallel Matrix-Vector(A,B,C)

```
For i = 0 to n-1 do in parallel

C[i] = 0

For j = 0 to n-1 do

C[i] = C[i] + A[i, j] * B[j]

End for
```

End parallel

If matrix A is square (m=n), the sequential algorithm of matix-vector multiplication has the complexity $T_s = O(n^2)$.

In case of parallel computations each processor performs multiplication of only a part (stripe) of the matrix A by the vector b.

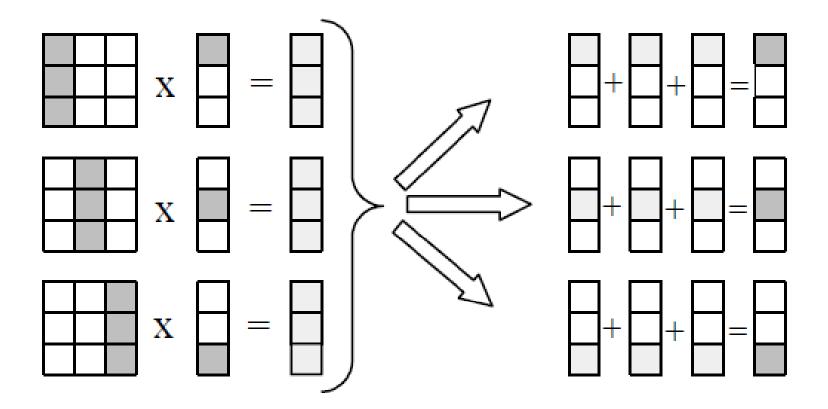
The size of these stripes is equal to n/p rows (or one row if p = n).

In case of computing the inner product of one matrix row by a vector, it is necessary to perform the n multiplications and (n-1) additions.

$$T_p(n) = O(n^2/p)$$
, when $p = n$; $T_p(n) = O(n)$
 $S_p(n) = \frac{n^2}{n^2/p} = p$, when $p = n$; $S_p(n) = O(n)$ $E_p(n) = \frac{n^2}{p*^{n^2}/p} = 1$

In case of columnwise matrix decomposition the operation of multiplying a column of matrix A by one of the vector b elements may be chosen as the basis computational subtask.

As a result to perform computations each basic subtask i, $0 \le i < n$, must contain the ith column of matrix A and the ith elements b_i and c_i of vectors b and c.



At the starting point of the parallel algorithm of matrixvector multiplication each basic task i carries out the multiplication of its matrix A column by element b_i . As a result, vector c'_i (the vector of intermediate results) is obtained in each subtask.

each basic subtask i, $0 \le i < n$, will contain n partial values $c'_i(j)$, $0 \le j < n$. Element c_i of the result vector c is determined after the addition of the partial values

Columnwise Parallel Matrix-Vector(A,B,C)

For j = 0 to n-1 do in parallel For i = 0 to n-1 do C'[i][j] = A[i][j] * B[j] End for

End parallel

```
For i = 0 to n-1 do in parallel

C[i] = 0

For j = 0 to n-1 do

C[i] = C[i] + C'[i][j]

End for
```

End parallel

If matrix A is square (m=n), the sequential algorithm of matix-vector multiplication has the complexity $T_s = O(n^2)$.

In case of parallel computations each processor performs multiplication of only a part (stripe) of the matrix A by the vector b.

The size of these stripes is equal to n/p rows (or one row if p = n).

In case of computing the inner product of one matrix row by a vector, it is necessary to perform the n multiplications and (n-1) additions.

$$T_p(n) = O(n^2/p)$$
, when $p = n$; $T_p(n) = O(n)$
 $S_p(n) = \frac{n^2}{n^2/p} = p$, when $p = n$; $S_p(n) = O(n)$ $E_p(n) = \frac{n^2}{p*^{n^2}/p} = 1$

